If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+6t-43=0
a = 5; b = 6; c = -43;
Δ = b2-4ac
Δ = 62-4·5·(-43)
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-8\sqrt{14}}{2*5}=\frac{-6-8\sqrt{14}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+8\sqrt{14}}{2*5}=\frac{-6+8\sqrt{14}}{10} $
| 2.3p=18 | | 7x-8-43= | | (2a−6)(3a+15)=0. | | z/72.5=82.9 | | 53=101-8h | | 7l+l^2=170 | | 7x=9x-80 | | -3=4x+15 | | -x²-14x+48=0 | | 3x(x+10)=15 | | 40=173-x | | 2y^2=5y-+3 | | 189=20-u | | 142=7x+4x+10 | | 6x^2-3x+9x=4 | | z+61/3=4 | | 107=30+11x | | 3(x-9)=6x-9 | | -v+272=103 | | 2(3x+7)=4(-2x=1 | | 5x+3(2x-1)=8 | | 11x+3x=100 | | 3(4x–1)=33 | | 3(x+2)=8+4x | | 3m-20=2m | | .3333333x-5+171=x | | 2/3(x+5)^-1/3=0 | | -2-5u-17=25 | | 89=2t+21 | | -5(3x-8)=130 | | 0.40(x+200)=900 | | -n=2n−9 |